gamma-Hydroxybutyric (GHB)


Formula C4H8O3
Molar mass 104.10 g/mol (GHB)
126.09 g/mol (sodium salt)
142.19 g/mol (potassium salt) g·mol−1
3D model (JSmol)


gamma-Hydroxybutyric acid or γ-Hydroxybutyric acid (GHB), also known as 4-hydroxybutanoic acid, is a naturally occurring neurotransmitter and a psychoactive drug. It is a precursor to GABA, glutamate, and glycine in certain brain areas. It acts on the GHB receptor and is a weak agonist at the GABAB receptor. GHB has been used in the medical setting as a general anesthetic and as a treatment for cataplexy, narcolepsy, and alcoholism.It is also used illegally as an intoxicant, as an athletic performance enhancer, as a date rape drug, and as a recreational drug.

It is commonly used in the form of a salt, such as sodium γ-hydroxybutyrate (NaGHB, sodium oxybate, or Xyrem) or potassium γ-hydroxybutyrate (KGHB, potassium oxybate). GHB is also produced as a result of fermentation, and is found in small quantities in some beers and wines, beef and small citrus fruits. buy backpack boyz

Succinic semialdehyde dehydrogenase deficiency is a disease that causes GHB to accumulate in the blood.

Medical use

GHB is used for medical purposes in the treatment of narcolepsy and, more rarely, alcoholism, although its use for alcoholism is not supported by evidence from randomized controlled trials.It is sometimes used off-label for the treatment of fibromyalgia. GHB is the active ingredient of the prescription medication sodium oxybate (Xyrem). Sodium oxybate is approved by U.S. Food and Drug Administration for the treatment of cataplexy associated with narcolepsy and excessive daytime sleepiness (EDS) associated with narcolepsy.

GHB has been shown to reliably increase slow-wave sleep and decrease the tendency for REM sleep in modified multiple sleep latency tests.

Recreational use

Delphic analysis of harm assessment for 20 popular recreational drugs (conducted by David Nutt and his colleagues at University of Bristol in 2007) ranks (in decreasing order of harmfulness) GHB 15th in dependence, 19th in physical harm, and 14th in social harm.

GHB is a central nervous system depressant used as an intoxicant. It has many street names. Its effects have been described anecdotally as comparable with ethanol (alcohol) and MDMA use, such as euphoria, disinhibition, enhanced libido and empathogenic states.

A review comparing ethanol to GHB concluded that the dangers of the two drugs were similar. At higher doses, GHB may induce nausea, dizziness, drowsiness, agitation, visual disturbances, depressed breathing, amnesia, unconsciousness, and death. One potential cause of death from GHB consumption is polydrug toxicity. Co-administration with other CNS depressants such as alcohol or benzodiazepines can result in an additive effect (potentiation), as they all bind to gamma-aminobutyric acid (or “GABA”) receptor sites. The effects of GHB can last from 1.5 to 4 hours, or longer if large doses have been consumed. Consuming GHB with alcohol can cause respiratory arrest and vomiting in combination with unrousable sleep, which can contribute to a lethal outcome. five point la menu

Recreational doses of 1–2 g generally provide a feeling of euphoria, and larger doses create deleterious effects such as reduced motor function and drowsiness. The sodium salt of GHB has a salty taste. Other salt forms such as calcium GHB and magnesium GHB have also been reported, but the sodium salt is by far the most common.

Some prodrugs, such as γ-butyrolactone (GBL), convert to GHB in the stomach and blood stream. Other prodrugs, such as 1,4-butanediol (1,4-B), have their own toxicity concerns. GBL and 1,4-B are normally found as pure liquids, but they can be mixed with other more harmful solvents when intended for industrial use (e.g. as paint stripper or varnish thinner).

GHB can be manufactured with little knowledge of chemistry, as it involves the mixing of its two precursors, GBL and an alkali hydroxide such as sodium hydroxide, to form the GHB salt. Due to the ease of manufacture and the availability of its precursors, it is not usually produced in illicit laboratories like other synthetic drugs, but in private homes by low-level producers.

GHB is “colourless and odourless”.

A 2006 report commissioned by a UK parliamentary committee found the use of GHB to be less dangerous than tobacco and alcohol in physical harm, dependence and social harms.

Party use

GHB has been used as a club drug, apparently starting in the 1990s, as small doses of GHB can act as a euphoriant and are believed to be aphrodisiac. Slang terms for GHB include liquid ecstasylollipopsliquid X or liquid E due to its tendency to produce euphoria and sociability and its use in the dance party scene.By 2009 this use had diminished, possibly due to efforts to control distribution of GHB and its analogs, or to the narrow range of dosing and adverse effects of confusion, dizziness, blurred vision, hot/cold flushes, profuse sweating, vomiting, and loss of consciousness when overdosed. The downward trend was still apparent in 2012.

Sports and athletics

Some athletes have used GHB or its analogs because of being marketed as anabolic agents, although there is no evidence that it builds muscle or improves performance.

Endogenous production

Cells produce Gamma- hy by reduction of succinic semialdehyde via succinic semialdehyde reductase (SSR). This enzyme appears to be induced by cAMP levels, meaning substances that elevate cAMP, such as forskolin and vinpocetine, may increase GHB synthesis and release. Conversely, endogeneous Gamma production in those taking valproic acid will be inhibited via inhibition of the conversion from succinic acid semialdehyde to GHB.[74] People with the disorder known as succinic semialdehyde dehydrogenase deficiency, also known as γ-hydroxybutyric aciduria, have elevated levels of GHB in their urine, blood plasma and cerebrospinal fluid.

The precise function of Gamma in the body is not clear. It is known, however, that the brain expresses a large number of receptors that are activated by Gamma- hydro. These receptors are excitatory, however, and therefore not responsible for the sedative effects of GHB; they have been shown to elevate the principal excitatory neurotransmitter, glutamate.The benzamide antipsychotics—amisulpride, nemonapride, etc.—have been shown to bind to these GHB-activated receptors in vivo. Other antipsychotics were tested and were not found to have an affinity for this receptor.

GHB is a precursor to GABA, glutamate, and glycine in certain brain areas.

In spite of its demonstrated neurotoxicity, (see relevant section, above), GHB has neuroprotective properties, and has been found to protect cells from hypoxia.

Natural fermentation by-product

GHB is also produced as a result of fermentation and so is found in small quantities in some beers and wines, in particular fruit wines. The amount found in wine is pharmacologically insignificant. buy gbl in buk


GHB has at least two distinct binding sites in the central nervous system. Gamma acts as an agonist at the excitatory GHB receptor and as a weak agonist at the inhibitory GABAB receptor. The gamma hydro is a naturally occurring substance that acts in a similar fashion to some neurotransmitters in the mammalian brain. This is probably synthesized from GABA in GABAergic neurons, and released when the neurons fire. order gbl Australia 

GHB has been found to activate oxytocinergic neurons in the supraoptic nucleus.

If taken orally, GABA itself does not effectively cross the blood–brain barrier. buy oxycodone

GHB induces the accumulation of either a derivative of tryptophan or tryptophan itself in the extracellular space, possibly by increasing tryptophan transport across the blood–brain barrier. The blood content of certain neutral amino-acids, including tryptophan, is also increased by peripheral GHB administration. GHB-induced stimulation of tissue serotonin turnover may be due to an increase in tryptophan transport to the brain and in its uptake by serotonergic cells. As the serotonergic system may be involved in the regulation of sleep, mood, and anxiety, the stimulation of this system by high doses of GHB may be involved in certain neuropharmacological events induced by GHB administration. Gamma-hydroxybutyrate

However, at therapeutic doses, GHB reaches much higher concentrations in the brain and activates GABAB receptors, which are primarily responsible for its sedative effects. GHB’s sedative effects are blocked by GABAB antagonists. buy weed online uk 

The role of the GHB receptor in the behavioural effects induced by GHB is more complex. GHB receptors are densely expressed in many areas of the brain, including the cortex and hippocampus, and these are the receptors that GHB displays the highest affinity for. There has been somewhat limited research into the GHB receptor; however, there is evidence that activation of the GHB receptor in some brain areas results in the release of glutamate, the principal excitatory neurotransmitter. Drugs that selectively activate the GHB receptor cause absence seizures in high doses, as do GHB and GABAB agonists.

Activation of both the GHB receptor and GABAB is responsible for the addictive profile of GHB. GHB’s effect on dopamine release is biphasic. Low concentrations stimulate dopamine release via the GHB receptor. Higher concentrations inhibit dopamine release via GABAB receptors as do other GABAB agonists such as baclofen and phenibut. After an initial phase of inhibition, dopamine release is then increased via the GHB receptor. Both the inhibition and increase of dopamine release by GHB are inhibited by opioid antagonists such as naloxone and naltrexone. Dynorphin may play a role in the inhibition of dopamine release via kappa opioid receptors. smart whip cream chargers

This explains the paradoxical mix of sedative and stimulatory properties of GHB, as well as the so-called “rebound” effect, experienced by individuals using GHB as a sleeping agent, wherein they awake suddenly after several hours of GHB-induced deep sleep. That is to say that, over time, the concentration of GHB in the system decreases below the threshold for significant GABAB receptor activation and activates predominantly the GHB receptor, leading to wakefulness.

Recently, analogs of GHB, such as 4-hydroxy-4-methylpentanoic acid (UMB68) have been synthesised and tested on animals, in order to gain a better understanding of GHB’s mode of action. Analogues of GHB such as 3-methyl-GHB, 4-methyl-GHB, and 4-phenyl-GHB have been shown to produce similar effects to GHB in some animal studies, but these compounds are even less well researched than GHB itself. Of these analogues, only 4-methyl-GHB (γ-hydroxyvaleric acid, GHV) and a prodrug form γ-valerolactone (GVL) have been reported as drugs of abuse in humans, and on the available evidence seem to be less potent but more toxic than GHB, with a particular tendency to cause nausea and vomiting.


Metabolic pathway of GHB.

Both of the metabolic breakdown pathways shown for Gamma can run in either direction, depending on the concentrations of the substances involved, so the body can make its own Gamma either from GABA or from succinic semialdehyde. Under normal physiological conditions, the concentration of GHB in the body is rather low, and the pathways would run in the reverse direction to what is shown here to produce endogenous GHB. However, when GHB is consumed for recreational or health promotion purposes, its concentration in the body is much higher than normal, which changes the enzyme kinetics so that these pathways operate to metabolise GHB rather than producing it. Gamma-hydroxybutyrate

At the same time, research on the use of GHB in the form of sodium oxybate had formalized, as a company called Orphan Medical had filed an investigational new drug application and was running clinical trials with the intention of gaining regulatory approval for use to treat narcolepsy.

Source: Wikipedia


25 Grams, 50 grams, 75 grams, 100 grams, 200 grams


There are no reviews yet.

Be the first to review “gamma-Hydroxybutyric (GHB)”

Your email address will not be published.